
lnternat iomtl  Journal  o/Thermol~hys'ics. I'ol. I,~'. .\o. I. 1997 

Simulation of a Glass Transition in a Hot-Wire 
Experiment Using Time-Dependent Heat Capacity 

O. Andersson 

Reccircd May 13. 1996 

Tile transient Ilol-wire nlethod is used Jill sinltlllaileotls nle;.istirenlenls of tile 
tlicrrn;,ll condtlclivity ,:. ;,llltJ tile Ileal cap;,icity per trait volunle pep and yields ;,i 
peak in ). ;,rod ;,I dip in pc,  ne;,ir a glass transition. Through  simulatiorls, it is 
shown tllat these allom;,ih~l.is rcsuh,', arise due to a tinlc dependence  in cp, which 
is described by a fraction;,lI exponenti;,d Imlction: c:,( t ) = c:,l liquid ) + [ ca,( glass ) - 
Cz,(liquid)]e " ~ ' .  where r is tile heal c;,tp;,icity rel;,Lxation time ;,rod fl is a 
sanlple dependent paran~eter 10 <f l~<l l .  Bv a compar ison with experimental 
data Ik~r cyclohex;,uml a n d  glycerol, it is demonstrated that this model can be 
used |o  reproduce tile peak ;,rod lilt: dip as well ;.is tile temper;,iture at which 
these occtlr, hi addition, it is sJlown tllat tile in;.iximunl in ,~ occurs at r = 0.3 s. 
whereas r of tile minimunl in /~c t, is dependent on / ]  ;,uld nloves t)'om 0.4 to I s 
liv" a ch;,mge in /'~ from 1 to 0.5. Tile dill"erence in r between the peak and the 
dip is in agreement with the experimental restihs. It is coricluded th;,it the 
anomalies revc;,ll gl;,lss forming characteristics such as ;,i rougl'l classil]c;,ltion in 
tr of s trong ;.ind Ii'agile gl;,Iss Iortrlers. 

KEY P,'ORDS: glass transititm: heat c;, p icit.x.: hot-~vire method: relaxation: 
thermal conductivity. 

1. I N T R O D U C T I O N  

If a phase that exhibits molecular difl\lsion and/or reorientation is cooled 
rapidly enough to circumvent a phase transition, then a glass state will 
eventually be produced. The attribute of a glass is positional and/or orien- 
tational disorder which is frozen-in on the time scale of observation. This 
occurs at the glass transition temperature ~ ,  which separates an equi- 
librium supercooled state and the nonequilibrium glassy state. In the latter, 
the molecules  canno t  move last enough to establish a new equilibrium state 
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imposed by an external perturbation, e.g., a temperature change. Since a 
supercooled liquid does not exhibit the lowest Gibbs free energy, equi- 
librium refers here to a metastable state. 

One way to probe a glass transition is to measure a property, such as 
the isobaric heat capacity cp, as a function of temperature. With increasing 
temperature, the signature of a glass transition is an abrupt increase in cp, 
which reflects the onset of molecular motions, and it is well-known that the 
increase shifts to higher temperatures with increasing heating rate. Since T~ 
is taken as the temperature where % changes abruptly, it depends on the 
heating rate or time scale used in the experiment, which in practice can be 
varied in the range 10 2 K .min ~ (adiabatic calorimetry) to 10 2 K - m i n  
(differential scanning calorimetry). 

Another way to study the lbrmation of a glass is through quasi- 
isothermal relaxation time measurements. The molecular motions become 
increasingly slow with decreasing temperature, which can be observed in 
responses to external perturbations. For example, after a step change in the 
(external) pressure, the sample volume will change with time toward new 
equilibrium value and the (volume) relaxation time r can be determined. 
The result is a measure of r for the motions on the microscopic level since 
the time taken to relax will depend on these and, consequently, on Tu. 
Relaxation can also be studied in the frequency domain using a 
sinusoidally varying perturbation, e.g., an electric field. At low enough 
frequencies, r for diffusional (and/or reorientational) motions is short in 
comparison with the rate of change in the molecular equilibrium positions, 
which is imposed by the perturbation As a consequence, the molecules 
appear mobile in a low-frequency experiment. At high frequencies, this is 
not the case since the motions are too slow to adjust to the rapid changes 
of the equilibrium state. Consequently, properties will generally be dependent 
on the probe frequency v, especially near v=  1/(2ztr), which provides a 
rough limit between the low- and the high-frequency ranges in which the 
molecules can or cannot follow the changes of the equilibrium state, respec- 
tively. Many properties, such as volume, enthalpy and dielectric permittivity, 
show observable relaxation associated with a glass transition and often 
exhibit values for r (T)  within the same order of magnitude. To present 
values for Tg from relaxation time measurements, a fairly common practice 
is to assign it to the temperature where r is about 10 3 s. 

For the purpose of the following discussion, it is useful to correlate the 
time-scales of the two methods used to study glass transitions: temperature 
scanning experiments and quasi-isothermal relaxation time experiments. 
In the latter, it is of course straightforward to state the time scale associated 
with Tg, e.g., r = 10 3 s. Unfortunately, there is no general expression which 
relates this value to a specific cooling and heating rate since the relation 
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depends on the glass former [1 -3] .  However, using cooling rates lower 
than 1 K .  min - t should in general yield a Tg which corresponds to r >/10 3 
and is referred to as (calorimetric) Tg. 

In an interesting study of relaxation, Birge [4]  investigated the 
frequency dependence of c r by electrically heating a thin metal surface in 
contact with a glass former (glycerol). Using alternating current of a 
frequency which could be set, the heat wave frequency could be varied in 
the range 10 -2 to 10 3 Hz. At isothermal measurements just above Tg, an 
abrupt step decrease in the measured values for c v vs frequency was 
observed. The measurements yield the product of thermal conductivity and 
heat capacity per unit volume but the step was attributed to the latter. This 
decrease can be explained in terms of molecular motions not being able to 
follow a heat wave of high frequency and therefore not contributing to cp. 

That  is, the motions which become "immobile" at Tg cause the observed 
decrease in Q, above Tg because of the relatively short experimental time 
scale (10 2 to 10 3 s). Recently, the same effect has been investigated in 
other glass-forming systems [ 3, 5 ]. These results of a frequency dependence 
in cp, which is analogous to a time-dependent cp, are used to explain 
anomalies in data measured above Tg using the transient hot-wire method. 
Furthermore,  it is shown that these anomalies reveal characteristics of glass 
formers. 

The transient hot-wire method is a last and convenient method to 
determine thermal conductivity 2 and heat capacity per unit volume pcp 

[6 -8 ] .  The principle of the method is that a metal wire (the hot wire) is 
immersed in a substance for which 2 and pcp are to be determined (Fig. 1 ). 
The wire is electrically heated by a short pulse (1.4 s) and its temperature 

\ - - / [ 

- . ;  ~: ' ! 

~ .  - , . . , z  r 

T! i . I f ' .  L 

r ! i !  '.- '~ , L~ ! i ,  'E ; 

Fig. I. Tile sample cell used in hot-wire experiments and 
tile geometry in finite-element analysis of the hot-wire tem- 
perature rise. 
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increase with time t is determined. This is done by measurements of the 
wire resistance, which depends on the wire temperature T. An exact expres- 
sion for T(t} of the wire in terms of 2 and pcp of the substance has been 
derived for an infinitely long wire [9] and it follows that the desired 
properties can be obtained by a fitting procedure. It is important to note 
that the values for 2 and PG, are assumed to be time independent in the 
analysis. The advantages of the hot-wire method compared to a steady- 
state method is that long-time waiting for steady state is avoided and that 
the shape as well as the exact size of the samples is unimportant in the 
analysis. However, the samples must be sufficiently large so that heat reflected 
against the sample cell wall does not interfere with the temperature rise of 
the hot wire. 

The hot-wire method was initially applied to fluids [6] and has later 
been developed for solids using high pressure to produce good thermal 
contact between the wire and the solid [7, 8]. This improvement enabled 
studies of 2 and pcp of glass formers and it was observed that the method 
yielded a peak in 2 and a dip in pep near Tg of glycerol [ 10]. The same 
behavior has thereafter been observed in numerous investigations such as 
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Fig. 2. Expgrilllental results f o r  thcrlllal c o l l d u c -  

tivity and heal capacity per unit \'olumr of cyclo- 
hexanol plotted against temperature Ibr pressures in 
GPa given in parentheses [13] .  Arrows indicate 
peaks and dips which are signatures of a glass trans- 
ilion. {The data for/}% at 0.2 G Pa have been shifted 
vertically Ibr clarity.} 
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those of poly(vinyl acetate) [ 11 ], silicone oits [ 12 ], and cyclohexanol [ 13 ] 
(Fig. 2). Sandberg et al. [ 10], suggested that the anomalous values for 2 
and pep of glycerol were connected to the glass transition relaxation. 
As described, Tg is associated with the process of some modes of motion 
becoming immobile on cooling. In a simple model, these modes can be 
excited almost instantaneously at temperatures well above T~, whereas 
below Tg they cannot be excited within the time of an experiment. According 
to Sandberg et al. [10], the anomalies occur in the temperature range 
between these two extremes where the modes become possible to excite 
during the hot-wire pulse of 1.4 s. In other words, the anomalies arise due 
to changes in cp during the hot-wire heat pulse, an assumption which is 
supported by experimental data [3-5].  In this investigation, it is shown 
that the hypothesis of Sandberg et al. [ 10] is correct and that the hot-wire 
anomalies arise due to time dependence in cp. 

2. CALCULATIONS AND RESULTS 

2.1. Theory for Hot-Wire Experiments 

If an infinitely long hot-wire is heated, then its temperature rise is 
calculated by solving the heat transfer equation in two dimensions (Fig. 1 ). 
In l:act, the problem can even be reduced to one dimension because of the 
radial symmetry. In the approximation of an infinitely long hot wire, the 
heat transfer equations for the hot wire and the surrounding sample are 
given by 

02T 1 0 T  1 @T q 
0r z + - (1) r 01" a~ 0t 2~r~ 

02T 1 0 T  1 OT 
- - +  = 0  (2) 
ar z r Or a~ Ot 

where r is the radial coordinate, a ( = 2/pG,) is the thermal diffusivity, and 
q is the power supplied per unit length of the hot wire. The subscripts 1 
and 2 refer to the hot wire and sample, respectively. The exact solution of 
Eqs. (1) and (2) for the temperature rise A T  of the hot wire of radius r~ in 
an infinitely large sample is [9] 

2q~-' jl )' 1 - e '  ....... -"-" 
A T = ~  u3A(u, cc) du (3) 
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where 

Andcrsson 

J(u, ~x)= [uJ , , (u ) -  ro l l ( t , ' ) ]  2 + [ltY~,(u)-cxY,(u)] 2 

cx= 2pec/,2/plc/,I 

J .  and J~ are Bessel functions of the first kind of zeroth and first order and 
Y,, and Y~ are Bessel functions of the second kind of zeroth and first order. 

2.2. Glass Transition Model 

In hot-wire experiments, values for AT versus t are measured and 
Eq, (31 is fitted to these, yielding 2 and pc. of the sample. However, ill this 
case, we use Eqs. ( 1 ) and (2) to calculate theoretical values for AT versus 
t which would be obtained at a glass transition and, subsequently, fit 
Eq. (3) to these simt, lated data. In order to this, we mr, st introduce the 
effect of relaxation on the data ['or A T  versus t. This is accomplished by 
assigning the heat capacity of the sample %2 a time dependence. Ill the 
model, c:e(t--+ 0) is given by the heat capacity of the glass c..(glass). This 
is based on the assumption that only the modes which normally can be 
excited in the glassy state can respond quickly enough to absorb heat and. 
consequently, contribute to %. If the measurement time approaches 
infinity, however, then c,_~ will be equal to the heat capacity of the liquid 
c:,. (liquid), which is observed above T 0. The rate at which c. of the sample 
changes between these two limiting values depends on the temperature 
and is conveniently described in terms of the relaxation time r(T). With 
increasing temperature, r-+ 0 since the molecules respond quicker to a 
perturbation, and consequently, r-+ :c with decreasing temperature. In 
this case. we assume that a fractional exponential function provides a 
good description for %2(t) in terms of the relaxation time. This assumption 
yields 

c:,._(t) = c:,_~(liquid )+  [ c,,~(glass)- c/,2(liquid)]e '' ~'/' (4) 

where fl has a value between 0 and 1. The fractional exponential function 
has been successful in describing various relaxation data and was also 
favorably employed by Birge [4] .  It should be emphasized that % of the 
glass and the liquid states provide values for the initial and infinite times, 
respectively, and that the sample is not regarded as consisting of glassy and 
liquid domains. In a first attempt to reproduce the hot-wire results, we use 
fl = 1 (simple exponential) and the values for % of the glassy and liquid 
states are taken from experimental results. 
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2.3. Results and Comparison with Experiments for Cyclohexanol 

Equations (I) and (2) can be solved numerically using finite-element 
analysis [ 14] and the temperature of the hot wire can be calculated as a 
function of time. The following data, which are typical for a hot-wire 
experiment, were used: r~ = 5  x 10 s m, q=0.95 W .m ~, / ~ 1  =70 W .m i 
K ' , a n d p z c p , = _ g x l 0 " J . m  3 .K  Z. i n o u r c a s e ,  we compare the results 
from the calculations with the experimental results for cyclohexanol [ 13] 
(Fig. 2) and glycerol [15].  The source phase of the glassy state of 
cyclohexanol discussed here is a plastic crystalline phase [13 ] but the dis- 
cussion is valid also for liquid glass lbrmers such as glycerol. To keep the 
terminology simple and more familiar, it is therefore referred to as a liquid. 
If Eq. (4) is multiplied by density, then we can insert p_,cre(liquid)= 1.39 x 
1 0 " J . m  3 .K i and pecp2(glass)=l.13xlO ~' J . m  3-K i which are 
obtained from the experimental results at 0.06 GPa  (Fig. 2). In addition, we 
extract 2 , = 0 . 1 6 3 W . m  ~.K i just below and above the peak in 2. Above 
the peak, ,:~ is slightly larger but the difference is small and can, in this case, 
be attributed to the crystallization, which occurs above Tg and is clearly 
observed .just outside the range shown here. All parameters needed to 
calculate the temperature rise of the hot wire are now available and the 
results are shown in Fig. 3 for the relaxation times of 0.01 and 10 s ( f l=  1). 

After calculation ot'zl T(t) for a selected set of relaxation times, Eq. (3) was 
fitted to these data using ),2 and p,cp2 as fitting parameters (solid lines in 
Fig. 3 ). All other data were the same as those used in the initial calculations. 
Consequently, results associated with relaxation times well above Tg( r+  0) 
should yield )~,=0.163 W . m  I . K  i and p:cp ,_=l .39x lWJ .m 3.K i 
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Fig. 3. Calculated resuhs for temperature rise of tile hot 
wire plotted against time for two relaxation times. The 
solid lines are fits given by Eq. (3). 
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(liquid). whereas  results below T~(r--+ :rj) should yield 2 ~ = 0 . 1 6 3 W .  
m ] �9 K I and p_.cr = 1.13 x 10" J �9 111 3 - K ~ (glass). As shown in Fig. 4, 
this is indeed the case. The  interesting range is between these limits where 
a peak  and a dip apparen t ly  occur  in 2 and pc . ,  respectively, exactly as 
noticed in experiments.  Moreover .  we find that  the m a x i m u m  in 2 occurs 
at r ~ 0.3 s, whereas  the m i n i m u m  in pc .  appears  at r --0.4 s. As discussed 
below, this difference in r is consistent  with exper imenta l  results. 

Since the model  reproduces  the a n o m a l o u s  exper imental  results 
observed at m a n y  glass t ransi t ions well, it is possible to explore the extent 
to which var ious  pa ramete r s  affect the peak and dip shapes. The result can 
be used for character iza t ion  of glass formers  and also explain why some 
of these, such as C,,,, [16] ,  do not exhibit anomalies.  Initially, we 
investigate the effect of  a change in the relaxat ion function. The calcula- 
tions described above  were repeated using a fractional exponential  func- 
tion with f l = 0 . 5  instead of the simple exponential  relaxation function 
[ f l=  1 in Eq. (41]. As shown in Fig. 4, a smaller  value for fl gives a 
smaller  but b roade r  peak and dip. This is consistent with an in terpre ta t ion 
of fl as a l-neasure of  the relaxation t ime distribution. Tha t  is, the sample  
response to a per tu rba t ion  cannot  be described by a single independent  
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( ) f l = 0 . 5  [see Eq. 141]. 
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relaxation process and therefore not by a single r at each temperature. The 
smaller the value [or fl, the larger the distribution ot" relaxation times and, 
as a consequence, the broader the distribution of the relaxation effect 
(broader peak and dip). In addition to this result, the calculations for 
fl = 0.5 show that the maximum in 2 still occurs at r = 0.3 s but the mini- 
mum in pc':, moves to r = 1 s. 

Since the time dependence in c:, becomes less pronounced as the step 
in c:, at Tg decreases, it is obvious that the sizes of the anomalies should 
also depend on the size of the step. To quantify this, the step in c/, was 
reduced to half of that used in the calculations above (fl = 1). The peak size 
[ = 2  ...... - 2 ( r - - , 0 ) ]  decreased to 0.06 from 0.12 W . m  t . K  i for the full 
step in c,,  which indicates that it is proportional to the step size in c:,. 
It follows that glass formers which exhibit large differences in % between 
the glassy and the liquid states are more likely to exhibit anomalous rest, lts 
in 2 and pc/, near T~. Furthermore, the result can be used to understand 
the smaller and broader peak when there is a distribution of relaxation 
times. Instead of using a smaller value for fl to account lbr a distribution, 
one can divide the total step in c, at T~ in several smaller steps, each of 
which is associated with the excitation of a specilic mode and described by 
a silnple relaxation function. In other words, we imagine that the glass 
transition consists of several subtransitions which occur in a narrow 
temperature range. In order just to show the effect of such a division, we 
use the silnplesl distribution of only two simple relaxation functions and 
assume that these are associated with the relaxation times r~ and 2r~. That 
is, increasing the temperature from below to well above T~ will add two 
modes of motions, and the r of one of these is twice as large as that of the 
other (at all temperatures). Moreover, we assume that each mode accounts 
for half of the total step in c,. Based on the calculations above, it would 
result in two equally sized peaks in 2(r~), of a magnitude half of that 
corresponding to one simple relaxation function, and maxima at r~ =0.3 
and 0.15 s, respectively. It follows that a continuous distribution of relaxa- 
tion times results in a smaller but broader peak. We can conclude that tbr 
a given step in c:, at Tg, glass 1briners which are described by a simple 
exponential relaxation function should show the most pronounced 
anomalies in 2 and pc':,. 

In order to compare directly the theoretical results with the 
experimental data, the relaxation times must be related to temperatures. To 
do this, we can assume that literature data lbr r(T) [ 17] determined from 
both dielectric relaxation (r < 103 s) and enthalpy relaxation ( r >  103 s) at 
atmospheric pressure provide a good description. The temperatures for the 
simulated data shown in Fig. 5 were calculated using these results. Since 
the experiments were pertbrmed at elevated pressure, and 7",. increases 
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slightly with pressure, the measured data were recalculated fi'om 0.06 GPa  
to atmospheric pressure by a temperature shift of - 6  K (the results in 
Fig. 2 yield ZlTp~.~,k/dP ,~ 100 K -GPa ~). The temperatures for the maxima 
in )~ difi'er only by 2.5 K between the experiment and the simulations, 
which is about the same as the inaccuracies in these results. The inaccuracy 
m the temperature determination in hot-wire experiments is _+0.5 K and 
the recalculation to atmospheric pressure causes an additional uncertainty 
of +_0.5 K. Another possibility for the difl'erence is disagreement between 
dielectric ~ ,7, and heat capacity relaxation times, and a factor of 2 would be 
sufficient to account lot the small temperature difference observed here. In 
addition to this result, the widths as well as the sizes of the peaks and dips 
are of the correct magnitude. The peak size in the experiment is between 
that for fl' = 1 and that for/e = 0.5, indicating that the heat capacity relaxa- 
tion of cyclohexanol is best described with 0.5 < f l < l  (no value for fl of 
cyclohexanol could be found in the literature ). The exact experimental 
value for the maximum in ), could be reproduced using fl-~ 0.8. Dielectric 
relaxation data of the similar glass former cyclooctanol can be described 
with fl' ~ 0.7 [18],  indicating that the value is realistic. 

In a detailed analysis of the experimental data, it can be seen that the 
maximum in ;~ occurs at about 2.5 K higher temperature than does the 
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minimum in pep. This difference call be compared with 0.5 K (fl = 1 ) and 
2.5 K (/)'= 0.5) obtained in the simulations. Consequently, the simulations 
reproduce a difl'erence in temperature of correct size. 

The peak and the dip have occasionally been used to provide data for 
T~ and, apparently, correspond to z v 0.3 s, Since we know r(T)  for cyclo- 
hexanol, it is possible to estimate the difference in temperature between this 
result and that fi'om the more commonly employed assignment z(T~) = 
10 ~ s, which corresponds better to the calorimetric T~. This yields a 
difl'erence of about 12 K. In addition, we can obtain a general result for this 
difference which is based on a classification of glass formers. In this 
classification, glass formers tor which r vary rapidly with temperature near 
T~ are referred to as "fragile," whereas a weak dependence is a signature o[ 
a "strong" glass former [ 19, 20]. For the latter ?(log r l / ~ ? ( l / T )  is about 
17, whereas that for a fiagile glass former can be at least 90 near T~ [ 19], 
assuming that r is proportional to the viscosity. The differences in 
temperature between the peak in 2 and T~(z = 10 ~ s) are then roughly given 
by 0.21T~ and 0.04T~ lor strong and fragile glass formers, respectively. 
It follows that the temperature difference between the hot-wire anomalies 
and the calorimetric T,~ provides a rough strong-fragile classification of the 
glass former. Another way to compare strong-fragile glass formers is to 
plot log r vs T T~ [ 19, 20], which roughly can be obtained in the relaxa- 
tion time range where the anomalies are obserwlble (10 -" 10 -~ s). 

2.4. Results and Comparison with Experiments for Glycerol 

The calculations described above were repeated for glycerol. In this 
case, however, the temperature dependence of pc/, for both the glass and 
the liquid states was accounted for in the calculation of the hot-wire 
temperature rise. Two linear functions of temperature were fitted to experi- 
mental data for pc I, of glycerol (Fig. 6), yielding pcp(glass)=4890T+ 
4.02• and pcp( l iquid)=9480T+5.91x105.  The value for 2 was 
approximated by a constant value of 0.355 W . m  ~. K ~, which is a good 
approximation for temperatures below the peak in )~ but a slight over- 
estimation above the peak (Fig. 6). Moreover, a literature value for 
[]= 0.65 [Eq. (4)] of glycerol was used together with results for the tem- 
perature dependence of r =  [2nl0H"exp( - 2 5 0 0 / ( T -  128l)] ~ [4] .  The 
experimental data for ), and pc~, were recalculated from the measurement 
pressure of 0.16 GPa to atmospheric pressure by a temperature shill of 
7 K, which follows fi'om the result (dT~/dP),,~)s(~v~,=44 K . G P a  i [10]. 

As shown fix Fig. 6, the sizes of the anomalies are in good agreement, 
whereas the widths are slightly larger lbr the calctllated results. However, 
the experimental dilli~rence in 2( ~-5 %1 between results above and below 
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the peak (Fig. 6) indicates that 2 should also be slightly time dependent, 
which must be accounted for to obtain perfect agreement. 

A detailed analysis of the maxima in 2 and minima in pc;, shows that 
experimental anomalies occur at temperatures which are about 1 K apart, 
whereas the calculated results give a difference of 2 K. That is, in this case 
the calculation overestimates this difference, which was slightly under- 
estimated in the case of cyclohexanol. Moreover, the calculated anomalies 
are shifted about 3 K to higher temperatures than those of experimental 
anomalies, which is of the order of the inaccuracy. The peak temperature 
is about 200 K, which is 17 K higher than Tu ( =  183 K) for glycerol [21].  
This result (Tpc~, k --7",._, = 0 .1Tu)  yields a classification of glycerol as an 
intermediate glass tbrmer, which is in agreement with a detailed analysis 
[ 1 9 ] .  

3. DISCUSSION AND SUMMARY 

The key feature of this work is that c;, exhibits a time dependence near 
T~ which can affect the results from measurements utilizing a transient 
method. In particular, anomalous experimental data for 2 and pc. of a 
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hot-wire experiment are described very well by such a model. In the normal 
analysis of hot-wire data, it is assumed that % is constant during the 1.4 s 
of a measurement. If c:, increases during this time, then the assumption 
leads to a peak in the values for 2(T) and a dip in those for pc/,(T). These 
anomalies are good signatures of a glass transition and therefore provide 
useful information. Furthermore, their positions in temperature as well as 
their widths and sizes reveal characteristics of the glass former. In par- 
ticular, the simulations show that the shapes of the anomalies depend on 
the following. 

(a) The relaxation function. In terms of the fractional exponential 
function, the features in 2 and pc, are more pronounced the 
larger the value for fl and, consequently, largest for a glass 
former that exhibits a simple exponential relaxation function 
(fl = 1 I. That is, the widths decrease and the sizes increase with 
increasing ft. 

(b) The difference in c:, between the glassy state and its source phase. 
The larger the step in c,,, the larger sizes for the anomalies. 

(c) The relation between relaxation time and temperature. This has 
not been shown explicitly but it is obvious that this relation 
affects the peak and dip shapes. The stronger r depends on 
temperature for values of r in the range 102-10  2 s (see Fig. 4), 
the more pronounced anomalies because of decreasing widths. 
Consequently, a fragile glass former should exhibit more 
pronounced anomalies than strong ones since their r(T) increase 
abruptly near Tg. 

The best conditions for observing large anomalies may not all be fulfilled 
by one glass former. A simple exponential relaxation function is normally not 
observed for fragile glass formers near Tg [ 19]. Consequently, the best condi- 
tions of ( a ) and ( c ) are in general not found tbr the same glass former. On the 
other hand, fragile glass formers, in comparison with strong glass formers, 
commonly exhibit a large step in % at T~ [ 19 ]. Hence, the best condition of 
(b) generally follows from that of (c). Taking all these considerations into 
account, fragile glass formers probably exhibit the best systems tbr observing 
glass transition anomalies in hot-wire experiments. For strong glass formers, 
such as C(,,, and SiO2, which show very small steps in cp at Tg, the anomalies 
might be impossible to detect. (For Cc,. it is, however, possible to observe a 
discontinuity in d2/dT at T~ [ 16]. 

The results here of time-dependent c. substantiate previous results 
from measurements of frequency dependence in c. [3-5]. The abrupt 
decrease in c:, versus frequency observed by Birge [4] is of the same 
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magni tude  as the c e step at T~ in a measurement  using differential scanning  
calorimetry,  which is in quant i ta t ive  agreement  with the result found here 

in the t ime domain .  This result verifies that the frequency dependence in c, 
is associated with the modes which become " immobile"  below T~ in tem- 
perature  scanning  experiments.  If these modes are probed on a sufficiently 

short time scale, then they canno t  follow the heat wave and therefore do 

not  cont r ibu te  to c v even in a supercooled liquid state. 
In summary ,  the hot-wire method  can be used to probe time 

dependence in c~,, yielding characteristics of glass tbrmers. A peak in 2 and 
a dip in pc,+ are signatures of a relaxat ion associated with a glass t ransi t ion.  

Their  posi t ions in tempera ture  and their shapes provide a rough s t rong-  
fi'agile classification as well as a descript ion of the relaxat ion function. 
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